Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis

Lihong Li,[†] Jinxia Deng,[†] Jun Chen,[†] Xueyi Sun,[†] Ranbo Yu,[†] Guirong Liu,[†] and Xianran Xing^{*,†,‡}

Department of Physical Chemistry and State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

Received October 12, 2008. Revised Manuscript Received January 9, 2009

Perovskite alkaline niobates, especially of one-dimensional morphology, have many important industrial applications. Wirelike Nb₂O₅ and ANbO₃ (A = K, Na, (Na,K)) were fabricated by a topochemical method based on the molten salt synthesis. First, the precursor KNb₃O₈ with wire structure was prepared under the condition of molten salt KCl environment at 800 °C for 3 h. Then, rodlike H₃ONb₃O₈ and Nb₂O₅ were obtained from the wirelike KNb₃O₈ precursor. Finally, the rodlike ANbO₃ (A = K, Na, (Na,K)) were achieved with the intermediate oxide Nb₂O₅. The wirelike structure of the final product can be achieved when using wirelike Nb₂O₅ precursor only. The structural evolution was investigated among protonic niobate, niobium oxide, and niobates. The mechanism of these shape transitions was elucidated in the view of structure recombining and atomic diffusing. The (Na,K)NbO₃ ceramic sintered from the as-prepared rodlike particles under pressureless condition in the air performed with high piezoelectricity ($d_{33} = 140$ pC/N), which is much better than that of ceramics obtained from cubic or spheric particles.

Introduction

One-dimensional (1D) morphology of oxides, including tubes^{1–3} and rods and wires,^{4–17} have received much attention, because of their novel shape-dependent properties, such as ferroelectric,⁸ piezoelectric,^{4,12} and optical properties.⁵ Normally, the shape of crystalline particles depends on their internal structure, which means that materials with a cubic structure will normally form isotropic particles.¹⁷ Therefore,

- [†] Department of Physical Chemistry.
- * State Key Laboratory for Advanced Metals and Materials.
 (1) Tong, Z.; Takagi, S.; Shimada, T.; Tachibana, H.; Inoue, H. J. Am.
- *Chem. Soc.* **2006**, *128*, 684.
- (2) Park, T. J.; Mao, Y.; Wong, S. S. *Chem. Commun.* 2004, 2004, 2707.
 (3) Kobayashi, Y.; Hata, H.; Salama, M.; Mallouk, T. E. *Nano Lett.* 2007,
- 7, 2142 No. 7. (4) Qin, Y.; Wang, X. D.; Wang, Z. L. *Nature* **2008**, *451*, 809.
- (1) Qin, 1., Wang, X. D., Wang, Z. E. Rutart 2000, 471, 605.
 (5) Nakayama, Y. P.; Pauzauskie, J.; Radenovic, A.; Onorako, R. M.;
 Scelelle, P. Linchett, L. Wang, P. D. Materia 2007, 477, 1009.
- Saykally, R. J.; Liphardt, J.; Yang, P. D. *Nature* 2007, 447, 1098.
 (6) Mao, Y.; Banerjee, S.; Wong, S. S. J. Am. Chem. Soc. 2003, 125, 15718.
- (7) Rørvik, P. M.; Lyngdal, T.; Sæeterli, R.; Helvoort, A. T. J.; Holmestad, R.; Grande, T.; Einarsrud, M. A. *Inorg. Chem.* **2008**, *47*, 3173.
- (8) Yun, W. S.; Urban, J. J.; Gu, Q.; Park, H. Nano Lett. 2002, 2, 447.
- (9) Xu, C.; Zhen, L.; Yang, L.; He, K.; Shao, W.; Qin, L. Ceram. Int. 2008, 34, 435.
- (10) Xu, C.; Zhen, L.; Yang, R.; Wang, Z. L. J. Am. Chem. Soc. 2007, 129, 15444.
- (11) Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.
- (12) Suyal, G.; Colla, E.; Gysel, R.; Cantoni, M.; Setter, N. Nano Lett. **2004**, *4*, 1339.
- (13) Magrez, A.; Vasco, E.; Seo, J. W.; Dieker, C.; Setter, N.; Forro, L. J. Phys. Chem. B, 2006, 110, 58.
- (14) Zhu, H.; Zheng, Z.; Gao, X.; Huang, Y.; Yan, Z.; Zou, J.; Yin, H.; Zou, Q.; Kable, S. H.; Zhao, J.; Xi, Y.; Martens, W. N.; Frost, R. L. J. Am. Chem. Soc. 2006, 128, 2373.
- (15) Liu, L.; Li, X.; Li, Y. J. Cryst. Growth 2003, 247, 419.
- (16) Cai, Z.; Xing, X.; Yu, R.; Sun, X.; Liu, G. Inorg. Chem. 2007, 46, 7423.
- (17) Pribosic, I.; Makovec, D.; Drofenik, M. Chem. Mater. 2005, 17, 2953.

it is intresting to apply special methods to form highly anisotropic particles with a cubic structure.

Perovskite alkaline niobates represent a particularly interesting class of materials that exhibit a variety of considerable nonlinear optical, ferroelectric, piezoelectric, electrooptic, ionic conductive, pyroelectric, photorefractive, and photocatalytic properties.¹⁸ Particularly, alkaline niobates with high anisotropy exhibit unique shape-dependent piezoelectric¹⁹ and nonlinear optical properties.⁵ For instance, platelet seeds of NaNbO3 were used to form texture ceramics of niobate, which possessed high performance piezoelectric properties and were potential substitutes for the traditional lead zirconium titanate (PZT), by the reactive template grain growth (RTGG) method.¹⁹ Wirelike KNbO3 was used to compose a kind of tunable nanometric light source compatible with physiological environments, which could be imposed to implement a novel form of subwavelength microscopy.⁵ Therefore, high anisotropic alkaline niobates, especially 1D ones, have aroused great interest in various synthetic approaches. A sol-gel method was reported for the synthesis of needlelike KNbO3 by using niobium chloride precursors complexed with organic compounds.¹⁷ Hydrothermal reactions were used to form KNbO₃ wires^{13,20} and $Na_2Nb_2O_6 \cdot {}^2/_3H_2O$ fibers.¹⁴ Wirelike $K_2Nb_8O_{21}$ was obtained by the molten-salt synthesis (MSS).9 The advantages of MSS are its rapid and large-scale fabrication of materials and the control of powder morphology.²¹ Moreover, rodlike NaNbO₃

- (18) Guo, Y.; Kakimoto, K.; Ohsato, H. Appl. Phys. Lett. 2004, 85, 4121.
- (19) Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. *Nature* **2004**, *432*, 84.
- (20) Sun, C.; Xing, X.; Chen, J.; Deng, J.; Li, L.; Yu, R.; Qiao, L.; Liu, G. *Eur. J. Inorg. Chem.* **2007**, 2007, 1884.
- (21) Chen, J.; Xing, X.; Watson, A.; Wang, W.; Yu, R.; Deng, J.; Yan, L.; Sun, C.; Chen, X. Chem. Mater. 2007, 19, 3598.

^{*} Corresponding author. E-mail: xing@ustb.edu.cn.

and CaNb₂O₆ were synthesized by a topochemical method based on MSS.¹⁰ The topochemical method is one of strategic approaches aimed at controllable synthesis, which is associated with using localized solid-state compound transformations via the exchange, deletion, or insertion of individual atoms.^{19,22-24} This type of topochemical method based on MSS has been carried out to prepare various alkaline niobates with two dimensions (2D), such as platelike NaNbO₃ using the template of $Bi_{2.5}Na_{3.5}Nb_5O_{18}$,¹⁹ KNbO₃ using K₄Nb₆O₁₇,²² and (Na,K)NbO3 using K4Nb6O17.23 Although rodlike NaNbO₃ and CaNb₂O₆ were fabricated by the topochemical method, only a limited amount of work was available to synthesize 1D morphology complex niobates, especially for more than two types of cations, because it was difficult to control the composition or/and the crystal structure. K₂Nb₈O₂₁, which was used as template, had high synthesized temperature (1000 °C).¹⁰ Therefore, it is still a challenge to synthesize more complex oxides with 1D morphology at lower temperature. Furthermore, the structure evolution of alkaline niobates with 1D morphology from the template to the intermediate and final product during the reaction remains unexplored.

In the current work, the wirelike KNb_3O_8 was prepared by the MSS method. Rodlike $H_3ONb_3O_8$, Nb_2O_5 , and $ANbO_3$ (A = K, Na, (Na,K)) were obtained from KNb_3O_8 template by the topochemical method. The structure and morphology of the as-prepared particles were characterized by X-ray diffraction patterns (XRD) and scanning electron microscopy (SEM), and the thermal behavior of the protonic niobate powder was examined by thermogravimetry and differential scanning calorimetry (TG–DSC) methods. The elemental analyses were conducted by energy dispersive X-ray (EDX). The piezoelectric property of (Na,K)NbO₃ ceramic obtained from rodlike (Na,K)NbO₃ particles was determined. The structural evolution was investigated among KNb_3O_8 , $H_3ONb_3O_8$, Nb₂O₅, and KNbO₃.

Experimental Section

Analytical reagent grade Nb₂O₅ (>99.9%), K₂CO₃ (>99.0%), Na₂CO₃ (>99.8%), NaCl (>99.9%), KCl (>99.5%), and ethanol (>99.7%) were used as raw materials. In order to prepare 1D wirelike alkaline niobates, KNb₃O₈ was first prepared by MSS. Nb₂O₅ and KCl were mixed in ethanol according to a molar ratio of 1:10. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 800 °C for 3 h. The product was washed several times with hot deionized water to remove KCl salt. Second, 1 g of as-synthesized wirelike KNb₃O₈ was added to a 400 mL HNO₃ (2 M) solution and stirred for 48 h at room temperature. The rodlike H₃ONb₃O₈ was obtained, after the products were filtered, rinsed with distilled water, and dried in the oven. Third, the as-prepared H₃ONb₃O₈ was heated at 550 °C for 1 h to transform it into rodlike Nb₂O₅ powder. Finally, rodlike alkaline niobates, such as KNbO₃, NaNbO₃, and (Na,K)NbO₃, were synthesized from the previously prepared precursors of wirelike KNb₃O₈, H₃ONb₃O₈, and Nb₂O₅ by MSS, respectively. As for the synthesis of rodlike KNbO₃, all these three kinds of 1D precursors were tried. The molar ratios of KNb₃O₈: K₂CO₃, H₃ONb₃O₈:K₂CO₃, and Nb₂O₅:K₂CO₃ were 1:1, 1:1.5, and 1:1, respectively. The mixtures were heated at 850 °C for 10 min in an equal weight of molten salt KCl. As for the synthesis of NaNbO₃, rodlike Nb₂O₅ and Na₂CO₃ were mixed with equal mole ratio and then were heated at 850 °C for 10 min in an equal weight of molten salt NaCl. Complex alkaline niobates of (Na,K)NbO₃ was also prepared with the rodlike reactants Nb₂O₅, K₂CO₃, and Na₂CO₃ in an equal weight of molten salt KCl carried out at 850 °C for 10 min. The molar ratio of the reactants was 1:0.45:0.55. The remnant molten salts were removed from the products by washing with hot deionized water several times. The as-synthesized powders were finally dried at 120 °C. Without any special treatment, the as-prepared rodlike (Na,K)NbO3 powders were pressed into disks and then were sintered at 1100 °C for 2 h. The ceramic pellets were polished and coated with silver paste on both sides. Polarization was carried out in a silicon oil bath at 100 °C under applied fields of $E_p = 3.5$ kV/mm for 20 min. The specimens were cooled to room temperature in the silicon oil bath and then aged for 24 h in air before measuring the piezoelectric property.

The structure of samples was characterized by X-ray powder diffraction (XRD) patterns, which were obtained on a 21 kW extra power X-ray diffractometer (model M21XVHF22, MAC Science Co., Ltd.) using Cu Ka radiation. The microstructure of the samples was observed using scanning electron microscopy (SEM, model LEO1530, LEO Electron Microscopy Ltd.). The composition of powders was determined by energy dispersive X-ray (EDX) analysis with the field-emission scanning electron microscope. Transmission electron microscopy (TEM) observation and the corresponding selected area electron diffraction (SAED) patterns were determined with a Hitachi H-800 TEM, and the samples were prepared by placing a drop of dilute alcohol dispersion of crystals on the surface of a copper grid. The thermal behaviors of the precursor powders were studied by differential scanning calorimetry (DSC, model Q600 SDT-DSC, TA Instruments, New Castle, DE) in air, at a heating rate of 20 °C/min. The piezoelectric coefficient d_{33} of the samples was measured using a quasi-static d_{33}/d_{31} meter (model ZJ-6A, Institute of Acoustics, Beijing, China).

Results and Discussion

KNb₃O₈ was prepared in a KCl melt (melting point, 761 °C) at 800 °C for 3 h. To identify the largest developed planes of as-synthesized particles, the XRD patterns are obtained from the particles that are dispersed in ethanol and then cast on glass substrates, which is called the oriented particulate layer X-ray diffraction measurement technique.²⁵ By using this casting method, the largest developed plane of the particles are easily aligned with the glass plane.²² Figure 1 shows the XRD patterns of cast and noncast KNb₃O₈ particles. The terms cast and noncast are used to differentiate the powder deposited on a substrate by coating with a suspension and the loose powder without any special treatment. From the XRD pattern of the cast particles, the predominant diffraction intensity of (020), (040), and (080) peaks are clearly seen, which indicates that the surface plane of the precursor are parallel to (0k0). All of the XRD peaks of the noncast particles (Figure 1b) can be assigned to the orthorhombic phase of KNb₃O₈ (JCPDS 75-2182) with lattice

⁽²²⁾ Saito, Y.; Takao, H. J. Eur. Ceram. Soc. 2007, 27, 4085.

⁽²³⁾ Li, L.; Chen, J.; Deng, J.; Yu, R.; Qiao, L.; Liu, G.; Xing, X. Eur. J. Inorg. Chem. 2008, 2008, 2186.

⁽²⁴⁾ Schaak, R. E.; Mallouk, T. E. Chem. Mater. 2002, 14, 1455.

⁽²⁵⁾ Lotgering, F. K. J. Inorg. Nucl. Chem. 1959, 9, 113.

⁽²⁶⁾ Yang, B.; Mo, M.; Hu, H.; Li, C.; Yang, X.; Li, Q.; Qian, Y. Eur. J. Inorg. Chem. 2004, 2004, 1785.

Figure 1. XRD pattern of KNb₃O₈ particles prepared by molten salt synthesized at 800 °C for 3 h (a) cast on a glass substrate and (b) without casting. (c) SEM micrograph of the KNb₃O₈ particles.

Figure 2. XRD pattern of $H_3ONb_3O_8$ particles obtained from wirelike KNb_3O_8 particles (a) cast on a glass substrate and (b) without casting. The inset is a SEM micrograph of the $H_3ONb_3O_8$ particles. (c) TEM image of an isolated $H_3ONb_3O_8$ rod with (inset) a typical SEAD pattern obtained from the same rod.

parameters of a = 8.920 Å, b = 21.18 Å, and c = 3.805 Å. The morphology of the synthesized KNb₃O₈ particles is shown in the Figure 1c. A large amount of wires with diameters of several hundred nanometers and the length of tens of micrometers was achieved.

Protonic niobate was obtained via an ion-exchange reaction between KNb₃O₈ wires and HNO₃ (2 M) solution. The XRD patterns of cast and noncast protonic niobate particles were displayed and compared in part a and b of Figure 2. From the cast XRD pattern, the predominant diffraction intensities of (020), (040), and (080) peaks are observed, and the surfaces of protonic niobate can be determined to be parallel to (0k0). The phase of the obtained protonic niobate can be confirmed to be an orthorhombic H₃ONb₃O₈ (JCPDS 44-672) with lattice parameters of a = 9.173 Å, b = 22.47 Å, and c = 3.743 Å by the XRD pattern without casting.²⁷ A large quantity of rodlike protonic niobates is shown in the insert of Figure 2a. The diameter and length of the assynthesized rodlike protonic niobates are several hundred nanometers and several micrometers, respectively. The EDX pattern shows that no K^+ ions exist, which indicates the complete conversion from KNb₃O₈ to H₃ONb₃O₈ (see Figure S1, Supporting Information). The SAED pattern (inset of Figure 2c and Figure S2b, Supporting Information) taken from the individual rod shown in Figure 2c and Figure S2a (Supporting Information) describes the nature of a single crystal of H₃ONb₃O₈ with the growth direction along direction [100], which is parallel to the surface of protonic niobates (0*k*0) detected by the XRD pattern.

The rodlike Nb₂O₅ can be obtained by heat treatment of as-prepared precursor $H_3ONb_3O_8$. The TG-DSC of $H_3ONb_3O_8$ shows that Nb₂O₅ could be formed above 400 °C (Figure S3, Supporting Information). Therefore, via heat treatment of $H_3ONb_3O_8$ at 550 °C, a large scale of niobium oxide rods was obtained (see the inset of Figure 3a and Figure S4, Supporting Information). The as-prepared niobium oxide rods, which become shorter and have a diameter of a few hundred nanometers and a length from a few hundred nanometers to several micrometers, retain the shape of the precursors $H_3ONb_3O_8$ and KNb_3O_8 . The phase of obtained niobium oxide was determined to be monoclinic Nb₂O₅

Figure 3. (a) XRD pattern of Nb_2O_5 particles obtained from rodlike $H_3ONb_3O_8$ particles. The inset is a SEM micrograph of the Nb_2O_5 particles. (b) TEM image of Nb_2O_5 rods with (inset) a typical SEAD pattern obtained from the rods.

Figure 4. SEM images of KNbO3 particles obtained from different precursors: (a) KNb3O8 particles, (b) H3ONb3O8 particles, and (c) Nb2O5 particles.

Figure 5. XRD patterns of KNbO₃ particles obtained from different precursors: (a) KNb_3O_8 particles, (b) $H_3ONb_3O_8$ particles, and (c) Nb_2O_5 particles. (d) TEM image of an isolated KNbO₃ rod obtained from the precursors Nb_2O_5 particles with (inset) its corresponding SEAD pattern.

(JCPDS 71-5, Figure 3a) with lattice parameters of a = 21.17 Å, b = 3.822 Å, c = 19.38 Å and $\beta = 119.8^{\circ}$, which was along the [101] growth direction (Figure 3b).

The KNbO₃ particles were synthesized at 850 °C for 10 min by using different 1D precursors KNb₃O₈, H₃ONb₃O₈, and Nb₂O₅, respectively. Even though the pure KNbO₃ can be obtained by these three different precursors, the shapes of the product are much different. There were lots of small cubic KNbO₃ particles (Figure 4a,b) that did not follow the shape of the precursors KNb₃O₈ and H₃ONb₃O₈; however, the rods of KNbO₃ (Figure 4c) inherited the Nb₂O₅ precursor's shape. The synthesis of KNbO₃ with different shape is

supposed to be a kind of self-sacrificing templated process. The XRD patterns (Figure 5a–c) confirm that all of the synthesized KNbO₃ products are orthorhombic system (JCPDS 71-946). The XRD patterns of cast and noncast KNbO₃ particles with lattice parameters of a = 3.972 Å, b = 5.664 Å, and c = 5.690 Å transformed from rodlike Nb₂O₅ are displayed and compared in Figure S5a,b (Supporting Information). The XRD pattern with casting was reindexed in a pseudocubic perovskite notation. The larger peaks of (011), (100), (022), and (200) were accordingly reindexed

(27) Nedjar, R.; Borel, M. M.; Raveau, B. Mater. Res. Bull. 1985, 20, 1291.

as {100} plane in the pseudocubic, which indicated that KNbO₃ rods grew along the $\langle 100 \rangle$ axis in a pseudocubic notation. The SAED pattern taken from an individual rod (see Figure 5d) shows that the as-prepared KNbO₃ particle has single-crystalline nature. The growth direction of KNbO₃ wires is also found to be matched with the pseudocubic perovskite structure along the [010] direction, which coincided with $\langle 100 \rangle$ axis in a pseudocubic notation (see Figure S6, Supporting Information).

The synthesized process of the as-prepared $KNbO_3$ particles with different shape, which are transformed from different precursors (Figure 4), was deduced. First, Nb_2O_5 and KCl were reacted to produce KNb_3O_8 . Then an ion-exchange of the K⁺ ion by the hydronium ion was observed according to the reaction

$$\text{KNb}_3\text{O}_8 \xleftarrow{\text{H}_3\text{O}^+}{\text{K}^+} \text{H}_3\text{ONb}_3\text{O}_8$$

It was also reported that the exchange reaction was reversible: the action of $H_3ONb_3O_8$ in a potassium salt solution led to the KNb_3O_8 .²⁷ Afterward, $H_3ONb_3O_8$ was heated to lose H_2O , and the reactions derived from DSC (Figure S3, Supporting Information) are depicted as follow:

$$H_3ONb_3O_8 \rightarrow HNb_3O_8 + H_2O1$$

 $HNb_3O_8 \rightarrow \frac{3}{2}Nb_2O_5 + \frac{1}{2}H_2O1$

Finally, wirelike KNb₃O₈ and rodlike H₃ONb₃O₈ and Nb₂O₅ were heated with K₂CO₃ in KCl melt. The KNbO₃ grains in Figure 4a,b might be ascribed to a "breaking up" of the wirelike KNb₃O₈ and H₃ONb₃O₈ particles, respectively. During these two reactions, both of the wirelike KNb₃O₈ and H₃ONb₃O₈ were broken up into small Nb₂O₅ particles and then reacted with K₂O dissolved in KCl molten salt by a topochemical reaction. This phenomenon was also observed for the rod-shaped K₂Ti₄O₉.¹⁶ The reactions are as follows:

$$KNb_{3}O_{8} + K_{2}CO_{3} \rightarrow \frac{3}{2}Nb_{2}O_{5} + \frac{3}{2}K_{2}O + CO_{2} \uparrow \rightarrow$$
$$3KNbO_{3} + CO_{2}\uparrow$$
$$H_{3}ONb_{3}O_{8} + \frac{3}{2}K_{2}CO_{3} \rightarrow \frac{3}{2}Nb_{2}O_{5} + \frac{3}{2}K_{2}O + \frac{3}{2}CO_{2}\uparrow \rightarrow$$
$$3KNbO_{3} + \frac{3}{2}CO_{2}\uparrow + \frac{3}{2}H_{2}O\uparrow$$

The formation of the rods $KNbO_3$ from the rodlike Nb_2O_5 particles can be explained by a "dissolution—precipitation" mechanism²⁸ and "template formation" mechanism.²⁹ The reaction is

$$Nb_{2}O_{5} + K_{2}CO_{3} \rightarrow Nb_{2}O_{5} + K_{2}O + CO_{2}\uparrow \rightarrow 2KNbO_{3} + CO_{2}\uparrow$$

Among various niobium oxides, niobium pentoxide (Nb_2O_5) is the thermodynamically stable phase.³⁰ In this case,

Figure 6. The schematic representation of the size- and shape-dependence of the morphological transformation of KNb₃O₈, H₃ONb₃O₈, Nb₂O₅, and KNbO₃.

 K_2O is much more soluble than Nb₂O₅, which almost does not dissolve³¹ in KCl. K_2O primarily dissolves into the salt and diffuses onto the surfaces of the much less soluble Nb₂O₅. Simultaneously, some of the Nb₂O₅ particles with the same tropism are assemble, which can be explained by the so-called "contact epitaxy" mechanism previously observed from silver clusters supported on a Cu (001) surface.³² Finally, K⁺ defused into Nb₂O₅ and KNbO₃ is synthesized by topochemical reaction. Therefore, the as-synthesized KNbO₃ grains, to a large extent, inherit the morphology of rodlike Nb₂O₅ and some of the KNbO₃ rods appear to be merged together. A schematic representation of the size- and shape-dependence of the morphological transformation of KNb₃O₈, H₃ONb₃O₈, Nb₂O₅, and KNbO₃ is shown in Figure 6.

From the point of view of the structure, the transformation shown in Figure 7 among KNb₃O₈,³³ H₃ONb₃O₈,^{27,34} Nb₂O₅,³⁵ and KNbO336 is further discussed. The structure of KNb3O8 could be characterized as a stacking of -Nb₃O₈- sheets consisting of corner-sharing and edge-sharing NbO₆ octahedra, and K atoms are located between the $-Nb_3O_8$ - sheets. In each sheet, three NbO₆ octahedra connected with sharing corners and edges along the [001] direction. In the structure of $H_3ONb_3O_8$, H_3O^+ tended to take the place of K^+ between the $-Nb_3O_8$ - sheets, which were similar to that of KNb_3O_8 . All three structures KNb₃O₈, H₃ONb₃O₈, and Nb₂O₅ could be described as being built up from identical units of three octahedra with corner- and edge-sharing shown in the oblong loop (Figure 7). This phenomenon explained that the transformation from H₃ONb₃O₈ to Nb₂O₅ was a soft reaction. H_3O^+ disengaged from $-Nb_3O_8-$ sheets and the sheets became closer and then connected by sharing the corner of NbO₆ octahedra.²⁷ So the shape of Nb₂O₅ did not change much from $H_3ONb_3O_8$, which corresponds to the morphology of Nb₂O₅. In the perovskite KNbO₃ crystal, NbO₆ octahedron units connected with sharing corners along the [001], [010], and [100] directions. When the topochemical reaction occurred in the molten salt KCl to produce KNbO3 by using KNb₃O₈, H₃ONb₃O₈, or Nb₂O₅ crystals, K⁺ needed to diffuse inside them, and this process involved the bond-breaking, rebonding, and new generation of bonds. Compared to the

(36) Hewat, A. W. J. Phys. C: Solid State Phys. 1973, 6, 2559.

⁽²⁸⁾ Kimura, T.; Takahashi, T.; Yamaguchi, T. J. Mater. Sci. 1980, 15, 1491.

⁽²⁹⁾ Xu, C. Y.; Zhang, Q.; Zhang, H.; Zhen, L.; Tang, J.; Qin, L. C. J. Am. Chem. Soc. 2005, 127, 11584.

⁽³⁰⁾ Varghese, B.; Haur, S. C.; Lim, C. T. J. Phys. Chem. C 2008, 112, 10008.

⁽³¹⁾ Li, C. C.; Chiu, C. C.; Desu, S. B. J. Am. Ceram. Soc. 1991, 74, 42.

⁽³²⁾ Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.

⁽³³⁾ Gasperin, P. M. Acta Crystallogr. 1982, B38, 2024.

⁽³⁴⁾ Nedjar, R.; Borel, M. M.; Raveau, B. J. Solid State Chem. 1987, 71, 451.

⁽³⁵⁾ Mcconnell, A. A.; Anderson, J. S.; Rao, C. N. R. Spectrochim. Acta 1976, 32A, 1067.

Figure 7. Schematic illustration of the structural transformations of Nb-containing species along with the mechanism of KNbO₃ synthesis by topochemical treatment.

Figure 8. SEM micrographs of (a) the rodlike NaNbO₃ particles and (b) $(Na,K)NbO_3$ particles.

more compact and stable structure of Nb₂O₅, the layer structure, which belongs to KNb_3O_8 and $H_3ONb_3O_8$, might be easier to destroy by the transport of K⁺ in the molten salt environment. This is why the small cubiclike, not rodlike, particles of $KNbO_3$ can be induced by using precursors KNb_3O_8 and $H_3ONb_3O_8$, and rodlike structure of $KNbO_3$ can well be inherited from the precursor Nb₂O₅.

It was expected that other niobates and more complex oxides with 1D morphology, such as NaNbO₃ and (Na,K)-NbO₃, could be obtained by the present topochemical method based on MSS. For synthesis of NaNbO₃, rodlike Nb₂O₅ and Na₂CO₃ mixed with NaCl were heated at 850 °C for 10 min. NaNbO3 rods with a diameter of several hundred nanometers and a length of several micrometers were observed from Figure 7a. The phase of as-prepared NaNbO3 was determined to be orthorhombic phase (JCPDS 82-606, Figure S7b, Supporting Information) with lattice parameters of a = 5.564Å, b = 7.767 Å, and c = 5.509 Å. The XRD pattern of cast NaNbO₃ particles (Figure S7a, Supporting Information) showed that the strong peaks of (101) were accordingly indexed as {101} plane. This method was also used to synthesize (Na,K)NbO₃. Rodlike Nb₂O₅, K₂CO₃, and Na₂CO₃ mixed with KCl salts were heated at 850 °C for 10 min. (Na,K)NbO3 rods had a diameter of several hundred nanometers and a length of several micrometers (Figure 8b). The phase of the obtained (Na,K)NbO3 was determined to be orthorhombic (space group Amm2, Figure S8b, Supporting Information) with lattice parameters of a = 3.964 Å, b =5.661 Å, and c = 5.652 Å, which was in agreement with the (K,Na)NbO₃ reported before.²³ The large peaks of (011) and (100) were accordingly reindexed as {100} plane of pseudocubic phase, which indicates that (Na,K)NbO₃ rods grew along the {100} plane in the pseudocubic phase, as determined from the casting XRD pattern (Figure S8a, Supporting Information). The ratio of Na:K of the product (Na,K)NbO₃ was about 0.55:0.45, as shown by EDX (Figure S8c, Supporting Information), which was close to that of reactants Na₂CO₃:K₂CO₃. Because of the short reaction time (10 min), the ratio of the Na:K of product (Na,K)NbO₃ is very close to the supposed nominal one by preventing the plentiful K⁺ of KCl salt from reacting with products and further diffusing into the A-site of perovskite.²³ Therefore, the more complex oxides, especially those with more than two types of cations in the A-site, could be prepared by this method. Furthermore, Figure S9a (Supporting Information) shows the XRD pattern of the (Na,K)NbO₃ ceramic, which is sintered from as-prepared rodlike (Na,K)NbO₃ particles under pressureless condition in air. From the SEM image obtained from the surface of the ceramic (see Figure S9b, Supporting Information), it is found that the anitropic morphology of the particle is maintained. The piezoelectric constant d_{33} of the (Na,K)NbO₃ ceramic is 140 pC/N, which was much higher than that of (Na_{0.5}K_{0.5})NbO₃ ceramics reported before $(d_{33} = 97 \text{ pC/N})$.¹⁸ The reason for the high d₃₃ of the present (Na,K)NbO₃ ceramic might be that the high anisotropic along pseudocubic {100} plane rods made the ceramic a little textured. Otherwise, it was reported that piezoelectric coefficients of textured piezoelectric ceramics were usually from 2 to 3 times higher than those of polycrystalline ones and as high as 90% of the single crystal values.³⁷ Therefore, if the ceramic was formed by textured methods with this kind of rods, such as reactive templated

⁽³⁷⁾ Messing, G. L.; Trolier-McKinstry, S.; Sabolsky, E. M.; Duran, C.; Kwon, S.; Brahmaroutu, B.; Park, P.; Yilmaz, H.; Rehrig, P. W.; Eitel, K. B.; Suvaci, E.; Seabaugh, M.; Oh, K. S. *Crit. Rev. Solid State* **2004**, *29*, 45.

grain growth (RTGG) and templated grain growth (TGG) methods, the piezoelectric property could be largely improved.

Conclusions

Wirelike KNb₃O₈ particles were synthesized by MSS. Topochemical method based on molten salts had been demonstrated to synthesize single-crystalline niobates with 1D morphology. Rodlike H₃ONb₃O₈, Nb₂O₅, and ANbO₃ (A = K, Na, (Na,K)) were obtained step-by-step from wirelike KNb₃O₈ particles. The small cubiclike particles of KNbO₃ were induced by using precursors KNb₃O₈ and H₃ONb₃O₈. But the rodlike structure of KNbO₃, NaNbO₃, and (Na,K)-NbO₃ can well inherit that of precursor Nb₂O₅. The structural evolution among protonic niobate, niobium oxide, and niobates was a kind of self-sacrificing templated process. Using normal sintering process, the (Na,K)NbO₃ ceramic derived from the rodlike powders produces a high piezoelectric constant $d_{33} = 140$ pC/N. This topochemical method may also be extended to fabricate other 1D morphology complex oxides.

Acknowledgment. This work was financially supported by National Natural Science Foundation of China (No. 20731001, 50725415 and 50704003), the National Key Program for Basic Research of 973 Program (No. 2007CB613601).

Supporting Information Available: EDX and TEM of H₃ONb₃O₈ particles obtained from wirelike KNb₃O₈ particles, TG–DSC of H₃ONb₃O₈ particles, SEM of Nb₂O₅ particles, XRD pattern and TEM of KNbO₃, XRD pattern of NaNbO₃ and (Na,K)NbO₃ particles, EDX of (Na,K)NbO₃ particles, and XRD pattern and SEM image of (Na,K)NbO₃ ceramic. This information is available free of charge via the Internet at http://pubs.acs.org.

CM802776G